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• Audio signal x = (x(1), ..., x(d)) 2 Rd
:

• Why is it so di�cult ?

    High Dimensional Classification 

given n sample values {xi , yi = f(xi)}in

• Classification: estimate a class label f(x)

d = 104/s
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     Curse of Dimensionality

local interpolation if f is regular and there are close examples:

• f(x) can be approximated from examples {xi , f(xi)}i by

?
x

• Need ✏�d
points to cover [0, 1]d at a Euclidean distance ✏

) kx� xik is always large
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”Similarity” metric: �(x, x0)

Data:

How to define � ?

      Euclidean Embedding 

x 2 Rd

kx� x

0k: non-informative

�x 2 H
Representation

k�x� �x0k

�

Linear Classifier

C1 k�x� �x0k  �(x, x0)  C2 k�x� �x0k
Equivalent Euclidean metric:

x

Intelligence
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x

⇢(u) = |u|

: Wavelets !

Linear Classificat.

⇢

linear convolution

linear convolution

rectifiers,...

Optimize the Lk with architecture conditions: over 109 paramet.

    Deep Convolution Neworks

L2

⇢

�(x)

...
Exceptional results for images, speech, bio-data classification.

Products by FaceBook, IBM, Google, Microsoft, Yahoo...

non-linear scalar:

L1

neuron

Why does it work so well ?

• The revival of an old (1950) idea: Y. LeCun
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   Overview of Questions

• How to build audio signal representations for classification ?

• Why are deep neural networks so efficient ?

• Why do wavelets appear in the cochlea and in most classifiers ? 

• Why non-linearities ?

               A Geometric Approach to Timbre
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⇥c � R , �(xc) = �(x) .

• Invariance to translations xc(t) = x(t� c)

• Preserve information

• What geometry ? t
quite poor...

   Geometric Representation

• Stability to deformations x� (t) = x(t� �(t))

⇤� , ⇧�(x� )� �(x)⇧ ⇥ C sup
t

|� �(t)| ⇧x⇧ .

deformation size

small deformations of x =� small modifications of �(x)
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if xc(t) = x(t� c) then | �xc(�)| = |x̂(�)|
• Fourier transform x̂(�) =

�
x(t) e�i�t dt invariance:

  Fourier Translation Invariance

• Spectrogram:

• Instabilites to small deformations x� (t) = x(t� �(t)) :

| |x̂� (�)|�| x̂(�)| | is big at high frequencies

⇥(t) = � t

stable

x̂(�) x̂� (�) �

unstable

t
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• Dilated wavelets:

Q-constant band-pass filters �̂�

Q � 16 for audio

• If |�|2 +
X

�

| ̂�|2 = 1 then kWxk2 = kxk2 .

• Choice of Q: sparsity

 �(t) = 2�j/Q  (2�j/Qt) with � = 2�j/Q .

         Wavelet Transform

|�̂�(⇥)|2

�

|�̂��(⇥)|2

�� �0

|�̂(⇥)|2��(t)
���(t)

• Wavelet transform: Wx(t) =
�

x ⌅� (t) , x ⌅ ⇥�(t)
⇥

�
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x(t)

|W1|x =

✓
x ? �2J

|x ?  �1 |

◆

�1

First wavelet transform

Modulus improves invariance:

W1x =

✓

x ?  �1

◆

�1

x ? �2J

    Wavelet Translation Invariance

x ?  �1(t) = x ?  

a
�1

(t) + i x ?  

b
�1

(t)|x ?  �1(t)| =
q

|x ?  a
�1

(t)|2 + |x ?  b
�1

(t)|2

|x ?  �1 | ? �2J (t)

2J

local translation invariance

x ? �2J (t)

full translation invariance

2J = 1

Second wavelet transform modulus

|W2| |x ?  �1 |=
✓

|x ?  �1 | ? �2J (t)
||x ?  �1 | ?  �2(t)|

◆

�2
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     Scattering Transform

�1

�2

t

t

�1

|W1|

|x ?  �1(t)|

x(t)

Q1 = 16

Q2 = 12J = 1

Mel Frequency
Spectrum

2J  50ms

Output:

t

�1

t

t

�1 |x ?  �1 | ? �2J (t)

�1

�2

t

|W2|

||x ?  �1 | ?  �2(t)|

|W3|

�1

�2

t

time average time average

||x ?  �1 | ?  �2 | ? �2J (t)

   Scattering Convolution Network

Modulation

Spectrum

1D 2D 3D

Output:
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= . . . |W3| |W2| |W1|xSJx =

0

BBBB@

x ? �2J

|x ?  �1 | ? �2J
||x ?  �1 | ?  �2 | ? �2J

|||x ?  �2 | ?  �2 | ?  �3 | ? �2J
...

1

CCCCA

�1,�2,�3,...

preserves norms kSJxk = kxk

kWkxk = kxk ) k|Wkx|� |Wkx
0|k  kx� x

0k

translations invariance and deformation stability:

if D⌧x(u) = x(u� ⌧(u)) then

lim
J!1

kSJD⌧x� SJxk  C kr⌧k1 kxk

      Scattering  Properties

contractive kSJx� SJyk  kx� yk (L2
stability)

Theorem: For appropriate wavelets, a scattering is
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x(t) = a(t) e ? h(t)

Resonator filter h(t)

Amplitude modulation a(t)

Excitation e(t) (pitched or random)

||x ?  �1 | ?  �2 | ? �2J
|x ?  �1 | ? �2J

⇡ |a ?  �2 | ? �2J
a ? �2J

If the excitation is stationary then

which characterises the amplitude spectrum.

          Audio Model
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First−order windowed scattering (small scale)
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First−order windowed scattering (large scale)
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Second−order windowed scattering (large scale) Band #75

18 Hz

Harmonic sound: x(t) = a(t) e ? h(t) with varying a(t)

        Amplitude Modulation
�

1
=

lo
g(

⇥
1
)

�
2

=
lo

g(
⇥

2
)

1977 Hz

�
1

=
lo

g(
⇥

1
) 512ms window

|x ⇥� �1 |(t)

|x ?  �1 | ? �(t)

||x ?  �1 | ?  �2 | ? �(t) for �1 = log(1977)
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3.2. MODULATED SOURCE-FILTER SIGNAL 87

�1

�1

�2

t

t

t

(a)

(b)

(c)

Figure 3.4: (a) The scalogram log |x ⇧ ⇥�1(t)| for a signal with three unvoiced sounds
having the same filter h: the first has a smooth attack, the second a sharp attack, and
the third a smooth attack a sinusoidal amplitude modulation. (b) Renormalized first-
order scattering coe⌅cients log ⇥S1x(t, �1) for T = 128 ms as a function of t and �1.
(c) Renormalized second-order scattering coe⌅cients log ⇥S2x(t, �1, �2) for a fixed �1 as a
function of t and �2.

which can be expressed more succinctly as

⇥S1x(t, �1) � |�h(�1)|
⇤h⇤ S1e(t, �1)

⇥S2x(t, �1, �2) � S1a(t, �2)
S0a(t)

.

As in the harmonic excitation case, the first-order scattering coe⌅cient describe the
short-time structure of the stochastic excitation. However, instead of a periodic structure
with maxima at certain frequencies, the first-order scattering coe⌅cients here form a
smooth envelope, describing the spectrum of the filter h. The second-order, on the other
hand, has the same approximation for a stochastic excitation, capturing the same type of
information on the envelope a as in the harmonic case.

To visualize the scattering coe⌅cients of a modulated source-filter signal with stochas-
tic excitation, we create three signals with the same filters and envelopes as in Figure 3.1,
but with e(t) being a realization of Gaussian white noise. Their scalograms are shown
in Figure 3.4(a), where the signals are clearly distinguishable due to their di�ering en-
velopes. As we average them in time to obtain first-order scattering coe⌅cients in Figure
3.4(b), however, they are virtually identical. Not only has the influence of the envelope
disappeared, the averaging also has reduced the stochastic variability of the coe⌅cients.
Finally, the second-order coe⌅cients in Figure 3.4(c) recover some of the information on
the envelope, allowing us to discriminate between the signals. Although the variability

12 Hz

     Stochastic Excitation

256 ms window

2400 
Hz

2400 
Hz

Random source: x(t) = a(t) e ? h(t) with varying a(t)

||x ?  �1 | ?  �2 | ? �(t) for �1 = 2400 Hz

�
1

=
lo

g(
⇥

1
)

�
2

=
lo

g(
⇥

2
)

�
1

=
lo

g(
⇥

1
)

|x ⇥� �1 |(t)

|x ?  �1 | ? �(t)
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First−order windowed scattering (small scale)
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First−order windowed scattering (large scale)
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Second−order windowed scattering (large scale) Band #51

SpectrumRandom source: x(t) = a(t) e ? h(t) with varying a(t)

        Same Power Spectrum
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�
1

=
lo

g(
⇥

1
)

�
2

=
lo

g(
⇥

2
)

�
1

=
lo

g(
⇥

1
) 2 s
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|f ?  �1 | ? �T (t) with T = 2 s

||f ?  �1 | ?  �2 | ? �T (t) for �1 = log(1122)

1122 Hz
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T = 740 ms

• Di�cult to analyse the sources of ine�ciencies

      Genre Classification (GTZAN)

Feature Set Error (%)

Delta-MFCCs

Time Scat., order 1 

Time Scat., order 2

Time Scat., order 3

Time-frequency Scat., order 2 

18.0

19.1

10.7

10.6

9.4

• Musical genre classification (jazz, rock, classical, ...)
10 classes and 30 seconds tracks.

• Each frame is classified using a Gaussian kernel SVM.
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The scattering transform of a stationary process X(t)

SJX =

0

BBBB@

X ? �2J
|X ?  �1 | ? �2J

||X ?  �1 | ?  �2 | ? �2J
|||X ?  �2 | ?  �2 | ?  �3 | ? �2J

...

1

CCCCA

�1,�2,�3,...

• Does E(SX) approximates well enough the distribution of X ?

Time Invariant Scattering  Moments

converges to moments if X is ergodic when 2

J
increases

E(SX) =

0

BBBB@

E(X)
E(|X ?  �1 |)

E(||X ?  �1 | ?  �2 |)
E(|||X ?  �2 | ?  �2 | ?  �3 |)

...

1

CCCCA

�1,�2,�3,...
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• Reconstruct x(t) from:

- 1st order coe�cients: |x ?  �1 | ? �2J (t), 8�1
for 2

J
= 1:

R
|x ?  �1(u)| du

for 2

J
= 1:

R
||x ?  �1 | ?  �2(u)| du

- 2nd order coe�cients: ||x ?  �1 | ?  �2 | ? �2J (t), 8�1,�2

N samples

Q1 log2 N coe↵s

Q1 Q2 log
2
2 N/2 coe↵s

  Inverse Scattering Transform
Joan Bruna
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    Stochastic of Audio Textures

20
40
60

20
40
60

20
40
60

20
40
60

20
40
60

20
40
60

20
40
60

original 1st order scattering

1st+2nd order scattering

K = 50 K = 500[McDermott & Simoncelli’11] Joan Bruna
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         Harmonic Sounds

Speech

Piano

Bird

Cello

V .Lostanlen

2J = 1

Need to express frequency channel interactions: time-frequency image
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rotated and dilated:

real parts imaginary parts

 �(t) = 2�j  (2�jr✓t) with � = (2j , ✓)

• Complex wavelet:  (t) = g(t) exp i⇠t , t = (t1, t2)

    Wavelets for Images

Wx =

✓
x ? �2J (t)
x ?  �(t)

◆

�2J
• Wavelet transform:
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|x ?  22,✓|

|x ?  23,✓|

x

   Scattering Transform in 2D

|x ?  21,✓||W1|

x ? �J

|W2|

3D wavelet convolutions

2D space and angle✓

✓

✓

✓
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For 2

J
= N : O(logN2

) scattering moments:

 Ergodic Texture Reconstructions
Joan BrunaOriginal Textures

Gaussian process model with same second order moments

kx ?  �1k1 ⇡ E(|x ?  �1 |) , k|x ?  �1 | ?  �2k1 ⇡ E(||x ?  �1 | ?  �2 |)

2D Turbulence
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Separable Time-Frequeny 2D wavelets

?

         Cortical Transform 
K. Patil, D. Pressnitzer, S. Shamma, M. Elhilali

sample was then defined based on its configuration in this
expanded space relative to the set of learned hyperplanes
(Figure 2).
Based on the configuration above and a 10% cross-validation

technique, the model trained using the physiological cortical
receptive fields achieved a classification accuracy of
87.22%±0.81 (the number following the mean accuracy
represents standard deviation, see Table 1). Remarkably, this
result was obtained with a large database of 11 instruments playing
between 30 and 90 different pitches with 3 to 19 playing styles
(depending on the instrument), 3 style dynamics (mezzo, forte and
piano), and 3 manufacturers for each instrument (an average of
1980 notes/instrument). This high classification accuracy was a
strong indicator that neural processing at the level of primary
auditory cortex could not only provide a basis for distinguishing
between different instruments, but also had a robust invariant
representation of instruments over a wide range of pitches and
playing styles.

The cortical model
Despite the encouraging results obtained using cortical receptive

fields, the classification based on neurophysiological recordings
was hampered by various shortcomings including recording noise
and other experimental constraints. Also, the limited selection of
receptive fields (being from ferrets) tended to under-represent
parameter ranges relevant to humans such as lower frequencies,
narrow bandwidths (limited to a maximum resolution of 1.2
octaves), and coarse sampling of STRF dynamics.
To circumvent these biases, we employed a model that mimics

the basic transformations along the auditory pathway up to the
level of A1. Effectively, the model mapped the one-dimensional
acoustic waveform onto a multidimensional feature space.
Importantly, the model allowed us to sample the cortical space
more uniformly than physiological data available to us, in line with
findings in the literature [29,30,40].
The model operates by first mapping the acoustic signal into an

auditory spectrogram. This initial transformation highlights the
time varying spectral energies of different instruments which is at

Figure 1. Neurophysiological receptive fields. Each panel shows the receptive field of 1 neuron with red indicating excitatory (preferred)
responses, and blue indicating inhibitory (suppressed) responses. Examples vary from narrowly tuned neurons (top row) to broadly tuned ones
(middle and bottom row). They also highlight variability in temporal dynamics and orientation (upward or downward sweeps).
doi:10.1371/journal.pcbi.1002759.g001

Figure 2. Schematic of the timbre recognition model. An acoustic waveform from a test instrument is processed through a model of cochlear
and midbrain processing; yielding a time-frequency representation called auditory spectrogram. This later is further processed through the cortical
processing stage through neurophysiological or model spectro-temporal receptive fields. Cortical responses of the target instrument are tested
against boundaries of a statistical SVM timbre model in order to identify the instrument’s identity.
doi:10.1371/journal.pcbi.1002759.g002

Biological Bases of Musical Timbre Perception
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 �t(t)

 ��1
(�1)

Rates

2j

2k

1D 2D 4D

|W1| |W2|

t

Wavelet transform image

frequency

time

�1

Neuron Receptive Fields in A1

sample was then defined based on its configuration in this
expanded space relative to the set of learned hyperplanes
(Figure 2).
Based on the configuration above and a 10% cross-validation

technique, the model trained using the physiological cortical
receptive fields achieved a classification accuracy of
87.22%±0.81 (the number following the mean accuracy
represents standard deviation, see Table 1). Remarkably, this
result was obtained with a large database of 11 instruments playing
between 30 and 90 different pitches with 3 to 19 playing styles
(depending on the instrument), 3 style dynamics (mezzo, forte and
piano), and 3 manufacturers for each instrument (an average of
1980 notes/instrument). This high classification accuracy was a
strong indicator that neural processing at the level of primary
auditory cortex could not only provide a basis for distinguishing
between different instruments, but also had a robust invariant
representation of instruments over a wide range of pitches and
playing styles.

The cortical model
Despite the encouraging results obtained using cortical receptive

fields, the classification based on neurophysiological recordings
was hampered by various shortcomings including recording noise
and other experimental constraints. Also, the limited selection of
receptive fields (being from ferrets) tended to under-represent
parameter ranges relevant to humans such as lower frequencies,
narrow bandwidths (limited to a maximum resolution of 1.2
octaves), and coarse sampling of STRF dynamics.
To circumvent these biases, we employed a model that mimics

the basic transformations along the auditory pathway up to the
level of A1. Effectively, the model mapped the one-dimensional
acoustic waveform onto a multidimensional feature space.
Importantly, the model allowed us to sample the cortical space
more uniformly than physiological data available to us, in line with
findings in the literature [29,30,40].
The model operates by first mapping the acoustic signal into an

auditory spectrogram. This initial transformation highlights the
time varying spectral energies of different instruments which is at

Figure 1. Neurophysiological receptive fields. Each panel shows the receptive field of 1 neuron with red indicating excitatory (preferred)
responses, and blue indicating inhibitory (suppressed) responses. Examples vary from narrowly tuned neurons (top row) to broadly tuned ones
(middle and bottom row). They also highlight variability in temporal dynamics and orientation (upward or downward sweeps).
doi:10.1371/journal.pcbi.1002759.g001

Figure 2. Schematic of the timbre recognition model. An acoustic waveform from a test instrument is processed through a model of cochlear
and midbrain processing; yielding a time-frequency representation called auditory spectrogram. This later is further processed through the cortical
processing stage through neurophysiological or model spectro-temporal receptive fields. Cortical responses of the target instrument are tested
against boundaries of a statistical SVM timbre model in order to identify the instrument’s identity.
doi:10.1371/journal.pcbi.1002759.g002
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2D Scalogram

Collapsing 4D

into 2D images

by averaging

time and

frequencies

• Good instrument classification performances with an SVM

    Timber of Musical Instruments

the core of most acoustic correlates and machine learning analyses
of musical timbre [5,11,13,41,42]. For instance, temporal features
in a musical note include fast dynamics that reflect the quality of
the sound (scratchy, whispered, or purely voiced), as well as slower
modulations that carry nuances of musical timbre such as attack
and decay times, subtle fluctuations of pitch (vibrato) or amplitude

(shimmer). Some of these characteristics can be readily seen in the
auditory spectrograms, but many are only implicitly represented.
For example, Figure 3A contrasts the auditory spectrogram of a
piano vs. violin note. For violin, the temporal cross-section reflects
the soft onset and sustained nature of bowing and typical vibrato
fluctuations; the spectral slice captures the harmonic structure of
the musical note with the overall envelope reflecting the
resonances of the violin body. By contrast, the temporal and
spectral modulations of a piano (playing the same note) are quite
different. Temporally, the onset of piano rises and falls much
faster, and its spectral envelope is much smoother.
The cortical stage of the auditory model further analyzes the

spectral and temporal modulations of the spectrogram along
multiple spectral and temporal resolutions. The model projects the
auditory spectrogram onto a 4-dimensional space, representing
time, tonotopic frequency, spectral modulations (or scales) and
temporal modulations (or rates). The four dimensions of the
cortical output can be interpreted in various ways. In one view, the
cortical model output is a parallel repeated representation of the
auditory spectrogram viewed at different resolutions. A different
view is one of a bank of spectral and temporal modulation filters
with different tuning (from narrowband to broadband spectrally,

Table 1. Classification performance for the different models.

Mean STD

Auditory Spectrum (Gaussian kernel SVM) 79.1% 0.7%

Neurophysiological STRFs (Gaussian kernel SVM) 87.2% 0.8%

Full Cortical Model (Linear SVM) 96.2% 0.5%

Full Cortical Model (Gaussian kernel SVM) 98.7% 0.2%

The middle column indicates the mean of the accuracy scores for the 10 fold
cross validation experiment and the right column indicates their standard
deviation. Models differ either in their feature set (e.g. full cortical model versus
auditory spectrogram) or in the classifier used (linear SVM versus Gaussian
kernel SVM).
doi:10.1371/journal.pcbi.1002759.t001

Figure 3. Spectro-temporal modulation profiles highlighting timbre differences between piano and violin notes. (A) The plot shows
the time-frequency auditory spectrogram of piano and violin notes. The temporal and spectral slices shown on the right are marked. (B) The plots
show magnitude cortical responses of four piano notes (left panels), played in normal (left) and Staccato (right) at F4 (top) and F#4 (bottom); and
four violin notes (right panels), played in normal (left) and Pizzicatto (right) also at pitch F4(top) and F#4 (bottom). The white asterisks (upper
leftmost notes in each quadruplet) indicate the notes shown in part (A) of this figure.
doi:10.1371/journal.pcbi.1002759.g003

Biological Bases of Musical Timbre Perception
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        Harmonic Spiral
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✓
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•

•

More regular variations along (✓, j) than �

• Alignment of harmonics in two main groups.

• Problem: the wavelet transform of harmonics is not sparse

Wednesday, November 19, 14



      Spiral Scattering

✓

j

t

�

t

3D separable Spiral wavelet transform W2

 �✓ (✓)

 �t(t)

✓
j

t

 �t(t) �✓ (✓) �j (j)
 �j (j)

V .Lostanlen
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     Shepard-Risset Glissando

✓

j

t

�

t

3D separable Spiral wavelet transform W2

 �t(t)

✓
j

t

 �t(t) �✓ (✓) �j (j) �j (j)

x(t) = a(t) e ? h(t)
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Sx(t,�1,�t,�✓,�j) = ||x ?  �1 | ?  �t �✓ �j | ? �2J (t)

• Second order spiral scattering in 5D:

• Scale separation in x(t) = a(t) e ? h(t)

@S(t,�1,�t,�✓,�j)

@�j
: depends on the frequency envelop

ˆh(!)

@S(t,�1,�t,�✓,�j)

@�✓
: depends on the pitch variations

@S(t,�1,�t,�✓,�j)

@�t
: depends on the moduluation amplitude

 Separate Pitch, Amplitude, Envelop
V .Lostanlen
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    Remarks and Questions

• Difficult to study timber through classification experiments only
Analysis-Synthesis is a powerful complement

• What relations between image and audio perception ?
– Auditory scene analysis (Bregman)
– Can we translate audio in images and reverse ?

• Can we analyse timbre from a geometrical point of view ?
– Search for regularity transformed into sparsity with wavelets

• Are such tools enough to access to large time scale structures ?
• Do we need to learn Deep Network Filters ?
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