

'incent Lostanlen, Stéphane Mallat Joan Bruna, Joaquim Andèn

École Normale Supérieure www.di.ens.fr/data High Dimensional Classification

• Audio signal $x = (x(1), ..., x(d)) \in \mathbb{R}^d$:

• Why is it so difficult ?

Curse of Dimensionality

• f(x) can be approximated from examples $\{x_i, f(x_i)\}_i$ by local interpolation if f is regular and there are close examples:

• Need ϵ^{-d} points to cover $[0,1]^d$ at a Euclidean distance ϵ $\Rightarrow ||x - x_i||$ is always large

Wednesday, November 19, 14

Euclidean Embedding

Representation $\Phi x \in \mathcal{H}$ Linear Classifier

Equivalent Euclidean metric: $C_1 \|\Phi x - \Phi x'\| \le \Delta(x, x') \le C_2 \|\Phi x - \Phi x'\|$

How to define Φ ?

Data: $x \in \mathbb{R}^d$

||x - x'||: non-informative

Deep Convolution Neworks

• The revival of an old (1950) idea: Y. LeCun

Optimize the L_k with architecture conditions: over 10⁹ paramet Exceptional results for *images, speech, bio-data* classification. Products by FaceBook, IBM, Google, Microsoft, Yahoo...

Why does it work so well?

Overview of Questions

- How to build audio signal representations for classification ?
- Why are deep neural networks so efficient?
- Why do wavelets appear in the cochlea and in most classifiers ?
- Why non-linearities ?

A Geometric Approach to Timbre

Geometric Representation

- What geometry ? \longrightarrow_t quite poor...
- **Invariance** to translations $x_c(t) = x(t-c)$

$$\forall c \in \mathbf{R} , \Phi(x_c) = \Phi(x) .$$

• Stability to deformations $x_{\tau}(t) = x(t - \tau(t))$ small deformations of $x \implies$ small modifications of $\Phi(x)$

$$\forall \tau$$
 , $\|\Phi(x_{\tau}) - \Phi(x)\| \le C \sup_{t} |\tau'(t)| \|x\|$.
● Preserve information deformation size

Fourier Translation Invariance

- Fourier transform $\hat{x}(\omega) = \int x(t) e^{-i\omega t} dt$ invariance: if $x_c(t) = x(t-c)$ then $|\hat{x}_c(\omega)| = |\hat{x}(\omega)|$
- Instabilities to small deformations $x_{\tau}(t) = x(t \tau(t))$: $||\hat{x}_{\tau}(\omega)| - |\hat{x}(\omega)||$ is big at high frequencies

Wednesday, November 19, 14

Wavelet Transform

• Dilated wavelets: $\psi_{\lambda}(t) = 2^{-j/Q} \psi(2^{-j/Q}t)$ with $\lambda = 2^{-j/Q}$

• Choice of Q: sparsity

Q-constant band-pass filters $\hat{\psi}_{\lambda}$ $Q \approx 16$ for audio

• Wavelet transform:
$$Wx(t) = \left\{ x \star \phi(t) , x \star \psi_{\lambda}(t) \right\}_{\lambda}$$

• If
$$|\phi|^2 + \sum_{\lambda} |\hat{\psi}_{\lambda}|^2 = 1$$
 then $||Wx||^2 = ||x||^2$.

Wavelet Translation Invariance

Modulus improves invariance: $|x \star \psi_{\lambda_1}(x) \dagger \psi_{\lambda_1}(x) \dagger \psi_{\lambda_1}(x) \dagger \psi_{\lambda_1}(x) \dagger \psi_{\lambda_1}(x) \dagger \psi_{\lambda_1}(x) = 0$

Second wavelet transform modulus

$$|W_2| |x \star \psi_{\lambda_1}| = \left(\begin{array}{c} |x \star \psi_{\lambda_1}| \star \phi_{2J}(t) \\ |x \star \psi_{\lambda_1}| \star \psi_{\lambda_2}(t)| \end{array} \right)_{\lambda_2}$$

EXAMPLE 1
Source of Contractions invariance and deformation stability:

$$i = x(u) = x(u - \tau(u)) \text{ then}$$

$$\lim_{J \to \infty} \|S_J D_\tau x - S_J x\| \le C \|\nabla \tau\|_{\infty} \|x\|$$

Wednesday, November 19, 14

Audio Model

Excitation e(t) (pitched or random) Resonator filter h(t)

Amplitude modulation a(t)

$$x(t) = a(t) e \star h(t)$$

If the excitation is stationary then

$$\frac{||x \star \psi_{\lambda_1}| \star \psi_{\lambda_2}| \star \phi_{2^J}}{|x \star \psi_{\lambda_1}| \star \phi_{2^J}} \approx \frac{|a \star \psi_{\lambda_2}| \star \phi_{2^J}}{a \star \phi_{2^J}}$$

which characterises the amplitude spectrum.

Amplitude Modulation

Harmonic sound: $x(t) = a(t) e \star h(t)$ with varying a(t)

Stochastic Excitation

Random source: $x(t) = a(t) e \star h(t)$ with varying a(t)

$|x \star \psi_{\lambda_1}|(t)$

Same Power Spectrum

Random source: $x(t) = a(t) e \star h(t)$ with varying a(t) Spectrum

Genre Classification (GTZAN)

- Musical genre classification (jazz, rock, classical, ...) 10 classes and 30 seconds tracks.
- Each frame is classified using a Gaussian kernel SVM.

Feature Set	Error (%)
Delta-MFCCs	18.0
Time Scat., order 1	19.1
Time Scat., order 2	10.7
Time Scat., order 3	10.6
Time-frequency Scat., order 2	9.4

T = 740 ms

• Difficult to analyse the sources of inefficiencies

Time Invariant Scattering Moments

The scattering transform of a stationary process X(t)

$$S_{J}X = \begin{pmatrix} X \star \phi_{2J} \\ |X \star \psi_{\lambda_{1}}| \star \phi_{2J} \\ ||X \star \psi_{\lambda_{1}}| \star \psi_{\lambda_{2}}| \star \phi_{2J} \\ |||X \star \psi_{\lambda_{2}}| \star \psi_{\lambda_{2}}| \star \psi_{\lambda_{3}}| \star \phi_{2J} \\ \dots \end{pmatrix}_{\lambda_{1},\lambda_{2},\lambda_{3},\dots}$$

converges to moments if X is ergodic when 2^J increases

$$\mathbb{E}(SX) = \begin{pmatrix} \mathbb{E}(X) \\ \mathbb{E}(|X \star \psi_{\lambda_1}|) \\ \mathbb{E}(||X \star \psi_{\lambda_1}| \star \psi_{\lambda_2}|) \\ \mathbb{E}(||X \star \psi_{\lambda_2}| \star \psi_{\lambda_2}| \star \psi_{\lambda_3}|) \\ \dots \end{pmatrix}_{\lambda_1, \lambda_2, \lambda_3, \dots}$$

• Does $\mathbb{E}(SX)$ approximates well enough the distribution of X ?

Inverse Scattering Transform

Joan Bruna

- Reconstruct x(t) from: N samples
 - 1st order coefficients: $|x \star \psi_{\lambda_1}| \star \phi_{2^J}(t), \forall \lambda_1$

for
$$2^J = \infty$$
: $\int |x \star \psi_{\lambda_1}(u)| du$
 $Q_1 \log_2 N$ coeffs

- 2nd order coefficients: $||x \star \psi_{\lambda_1}| \star \psi_{\lambda_2}| \star \phi_{2^J}(t), \forall \lambda_1, \lambda_2$

for
$$2^J = \infty$$
: $\int ||x \star \psi_{\lambda_1}| \star \psi_{\lambda_2}(u)| du$
 $Q_1 Q_2 \log_2^2 N/2$ coeffs

Stochastic of Audio Textures

V.Lostanlen

Need to express frequency channel interactions: time-frequency image

Wednesday, November 19, 14

Wavelets for Images

• Complex wavelet: $\psi(t) = g(t) \exp i\xi t$, $t = (t_1, t_2)$ rotated and dilated: $\psi_{\lambda}(t) = 2^{-j} \psi(2^{-j}r_{\theta}t)$ with $\lambda = (2^j, \theta)$

• Wavelet transform: $Wx = \begin{pmatrix} x \star \phi_{2^J}(t) \\ x \star \psi_{\lambda}(t) \end{pmatrix}_{\lambda \leq 2^J}$

Scattering Transform in 2D

ENS

Ens Ergodic Texture Reconstructions

Joan Bruna

Original Textures

2D Turbulence

Gaussian process model with same second order moments

For $2^J = N$: $O(\log N^2)$ scattering moments: $\|x \star \psi_{\lambda_1}\|_1 \approx \mathbb{E}(|x \star \psi_{\lambda_1}|)$, $\||x \star \psi_{\lambda_1}| \star \psi_{\lambda_2}\|_1 \approx \mathbb{E}(||x \star \psi_{\lambda_1}| \star \psi_{\lambda_2}|)$

Cortical Transform

K. Patil, D. Pressnitzer, S. Shamma, M. Elhilali

Timber of Musical Instruments

• Good instrument classification performances with an SVM

Harmonic Spiral

• Problem: the wavelet transform of harmonics is not sparse

• Alignment of harmonics in two main groups. More regular variations along (θ, j) than λ

Spiral Scattering

V.Lostanlen

EN

Shepard-Risset Glissando

3D separable Spiral wavelet transform W_2

Separate Pitch, Amplitude, Envelop-

V.Lost an len

• Second order spiral scattering in 5D:

$$Sx(t,\lambda_1,\lambda_t,\lambda_\theta,\lambda_j) = ||x \star \psi_{\lambda_1}| \star \psi_{\lambda_t} \psi_{\lambda_\theta} \psi_{\lambda_j}| \star \phi_{2^J}(t)$$

• Scale separation in $x(t) = a(t) e \star h(t)$

 $\frac{\partial S(t,\lambda_1,\lambda_t,\lambda_\theta,\lambda_j)}{\partial \lambda_t} : \text{depends on the moduluation amplitude}$

$$\frac{\partial S(t,\lambda_1,\lambda_t,\lambda_\theta,\lambda_j)}{\partial \lambda_\theta} : \text{depends on the pitch variations}$$

$$\frac{\partial S(t,\lambda_1,\lambda_t,\lambda_\theta,\lambda_j)}{\partial \lambda_j}$$

: depends on the frequency envelop $\hat{h}(\omega)$

Remarks and Questions

- Difficult to study timber through classification experiments only Analysis-Synthesis is a powerful complement
- What relations between image and audio perception ?
 - Auditory scene analysis (Bregman)
 - Can we translate audio in images and reverse ?
- Can we analyse timbre from a geometrical point of view ?
 - Search for regularity transformed into sparsity with wavelets
- Are such tools enough to access to large time scale structures ?
- Do we need to learn Deep Network Filters ?